
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

NASA/CR-2000-210545
ICASE Report No. 2000-39

Arcade: A Web-Java Based Framework for Distributed
Computing

Zhikai Chen and Kurt Maly
Old Dominion University, Norfolk, Virginia

Piyush Mehrotra
ICASE, Hampton, Virginia

Mohammad Zubair
Old Dominion University, Norfolk, Virginia

ICASE
NASA Langley Research Center
Hampton, Virginia
Operated by Universities Space Research Association

October 2000

Prepared for Langley Research Center
under Contract NAS1-97046

ARCADE: A WEB-JAVA BASED FRAMEWORK FOR DISTRIBUTED COMPUTING�

ZHIKAI CHENy, KURT MALYy, PIYUSH MEHROTRAz, AND MOHAMMAD ZUBAIRy

Abstract. Distributed heterogeneous environments are being increasingly used to execute a variety of

large size simulations and computational problems. We are developing Arcade, a web-based environment

to design, execute, monitor, and control distributed applications. These targeted applications consist of

independent heterogeneous modules which can be executed on a distributed heterogeneous environment. In

this paper we describe the overall design of the system and discuss the prototype implementation of the core

functionalities required to support such a framework.

Key words. meta-computing environment, multi-module applications

Subject classi�cation. Computer Science

1. Introduction. Distributed heterogeneous environments are being increasingly used to execute a

variety of large size simulation and computational problems. For instance, in multidisciplinary optimization,

multiple heterogeneous modules interact with each other to solve an overall design problem. Typically these

modules, consisting of various C or Fortran programs, are developed as separate codes, e.g., structural or
ow

analysis of an aircraft con�guration, and are optimized independently. The traditional path for integrating

these modules, through the use of scripts makes the process of specifying and optimizing the overall design

of such applications, a long and tedious process often taking several weeks. The slowness of this process is

mainly due to the absence of a collaborative environment where (i) di�erent modules and their interactions

can be speci�ed, and where (ii) testing, monitoring, and steering of the overall design can be done by multiple

users from di�erent disciplines concurrently. In this paper we describe Arcade, a web-based environment for

designing, executing, monitoring, and controlling distributed heterogeneous applications.

A typical scenario for developing and executing a distributed application is as follows: a team of design-

ers collaboratively develops the application consisting of a hierarchical set of modules. That is, individual

members are made responsible for specifying the submodules while the project leader is responsible for the

overall integration of the application, i.e., connecting the outputs of one module to the inputs of another.

The modules can range from simple sequential programs, to data-parallel programs capable of execution

on a multiprocessor or a network of workstations, to more complex subsystems which are de�ned hierarchi-

cally through the use of submodules. Preexisting modules whose sources are not available may need to be

\wrapped" in order to plug them into the overall application.

Once developed, the application is executed in a distributed environment using a heterogeneous network

of workstations and multiprocessor machines. During the execution, team members sitting at their individual

workstations simultaneously monitor the
ow of progress of the application. That is, the team members can

see the currently executing modules at any level of the hierarchy. They can also view the intermediate data

owing between di�erent modules including large data sets using visualization tools.

A team member responsible for a particular subsystem can change data values under the control of the

subsystem in order to steer the computation in the right direction. The team member can also dynamically

�This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046

while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.
yComputer Science Department, Old Dominion University, Norfolk, VA 23529 (fchen z, maly, zubairg@cs.odu.edu).
zICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199 (email: pm@icase.edu).

1

alter the control
ow if necessary. For example, in a design cycle, the responsible team member may decide

that a particular module is not a�ecting the optimization and may bypass the module by using old values

in each cycle. Similarly, the team could decide to use another algorithm and replace a module with another

plug compatible module. Once the execution is complete, team members again examine the �nal results

using the visualization tools.

The overall goal is to design an environment which is easy to use, easily accessible, portable and pro-

vides support through all phases of the application development and execution. We plan to leverage o� of

commodity technologies, such as the Web and Java, to implement various parts of the environment. These

technologies are capable of seamlessly interconnecting disparate hardware platforms running di�erent oper-

ating systems across diverse locations providing an ideal environment for distributed simulation of complex

systems.

In this paper we �rst describe our overall goals and then discuss the current prototype reporting on

our experiences and problems in implementing the system. The rest of the paper is organized as follows.

In the next section we present some related work. The two following sections describe the overall Arcade

architecture and the current prototype, respectively. The last section focuses on future work and conclusions.

2. Related Work. Several software systems have been developed that make distributed computing

available to an application programmer. These can be distinguished into di�erent categories. The �rst

category of environments includes systems such as MPI [10], PVM [15], pPVM [9] and JAVADC [5]. All

these environments support distributed computing in varying degrees of generality; however, either they are

not web based or they lack collaborative features. Also, they are mostly suitable for running SPMD programs.

The second category of environments address large distributed heterogeneous codes but are focused on a

single application domain. Examples of such environments include FIDO [16] and MIDAS [13]. However,

both these systems are either hardwired to a speci�c problem area or are too restrictive. The other major

limitation is that they lack a collaborative environment which would permit di�erent members in a group

to interact with the application at various stages of its design and execution.

The third category of environments which includes IceT [7], Programmer's Playground [6], PRE [14], and

WebFlow [3] supports some forms of heterogeneous distributed applications. The front-end for most of these

systems, is generally some variation of large-grained data
ow graphs with modules being triggered when

their inputs are available. In our experience, we have found that to more control structure than provided

by such data-
ow based systems is required to easily express heterogeneous applications. For example, in a

multidisciplinary optimization code, the optimization cycle would have to be embedded within a module in a

system which only supports data-
ow rather than being explicit at the outer level. Also, these systems mainly

concentrate on di�erent aspects of the infrastructure required for managing the execution and interaction

of the modules making up the application whereas the goal of the project described here is to build an

integrated framework for all phases of the design and execution of distributed heterogeneous applications.

Note that systems such as Tango [1] and Habanero [11] focus on interactive collaboration between users.

Such technologies would be useful in the speci�cation and the monitoring phases of the framework being

proposed here. However, such collaborative systems do not provide any support for the management and

steering of the execution of distributed applications.

3. Arcade Architecture. The architecture of the proposed framework is divided into three tiers as

shown in Figure 1.

First Tier: The �rst tier consists of the Java applets providing the following interfaces to the users:

2

Web

Browser

Internet

O R B

CORBA

 IIOP

DBMS

O R B

Applet Applet Applet Applet

Java Applets

Specification SteeringMonitoringResource

HTTP
Server Disk

User

Server
Interface

Execution

Controller

Monitoring

Object

RC Object/

User Modules

RC Object/

User Modules

RC Object/

User Modules

Fig. 1. Web Object Infrastructure for the Proposed Framework

� Application design interface for the hierarchical speci�cation of execution modules and their de-

pendencies. The system will provide support for multi-user speci�cation of hierarchical modules

including the speci�cation of module interactions and database access for persistent storage of re-

sults.

� Resource allocation and execution interface for specifying the hardware resources required for the

execution of the application. The resources could be chosen by the users or by the system based

on the current and predicted loads of the system and the characteristics of the application. The

choice could be made statically or dynamically during the execution of the application. The system

will also allow the users to choose the input/output �les and any command line arguments for the

modules prior to starting the execution.

� Monitoring and steering interface for monitoring and controlling the execution of the application.

Multiple users will be allowed to monitor the run both the
ow of execution and the intermediate

results. However only the subteam responsible for a particular submodule will be allowed to steer

its execution by either modifying data values or replacing plug-compatible modules.

Middle Tier: The middle tier consists of logic to process the user input and to interact with application

modules running on a heterogeneous set of machines. The overall design is a client-server based architecture

in which the Interface Server interacts with the front-end client to provide the information and services as

needed by the client. When the user requests the execution of an application, the Interface Server launches an

Execution Controller (EC) which manages the overall execution of the application by �ring up user modules

on the speci�ed resources as and when required. Other objects in the middle tier handle any monitoring and

steering requests from the client.

3

Third Tier: The third tier consists of Resource Controllers (RC) and the User Application Modules.

Each active resource in the execution environment is managed by an RC which is responsible for launching

modules on the resource and also for interacting with the Execution Controller in order to keep track of the

executing applications.

The main advantage of a three-tier system is that the client or the front-end becomes very thin, thus

making it feasible to run on low-end machines. Also, since most of the logic is embodied in the middle tier,

the RCs can be kept lightweight thus keeping the additional loads on the executing machines to a minimum.

The Web Object approach we are taking will coexist with the regular HTTP server. In contrast to

approaches with CGI-to-CORBA gateway or HTTP-to-IIOP gateways, this approach is easier to imple-

ment [12]. Here, the HTTP server will provide users Web pages with Java applets. These applets will

interact with the CORBA Interface server using CORBA-IIOP protocol. The applets can use static IDL-

generated client stubs or a Dynamic Invocation Interface to interact with the CORBA Interface server. The

CORBA Interface server will interact in similar manner with other objects on the ORB bus (see Figure 1).

4. Arcade Prototype. We have implemented the three-tier system, as described in the last section,

in a prototype Arcade system. The current system allows single users to specify applications through either

an o�ine script-based system or through a visual interface. The resources required for the execution have

to be statically speci�ed by the user. The current prototype supports only �le-based interaction among the

modules. The system manages the execution of the modules on a network of workstations in a single domain.

The execution status of the application can be monitored by multiple users simultaneously.

4.1. Application Speci�cation. In our framework a distributed application consists of a collection

of heterogeneous modules (application codes from di�erent disciplines). We are targeting applications where

these modules are very coarse-grained. A typical distributed application requires that these modules be

executed in a speci�c order and possibly on di�erent machines. For certain problems a set of modules may

need to be executed iteratively until a desired optimization criteria is reached. To be able to support a wide

variety of distributed applications, we support the following types of modules:

� Normal Module: This is the basic module in our framework and is used to represent the executable

parts in the applications. A normal module is identi�ed by its executable code and its input/output

�le requirements.

� If Module: This module provides a mechanism for testing the value of a condition. The truth-value

of the condition determines whether the modules in the then-block or the else-block (if present) will

be executed.

� Loop Modules: These modules allow a set of \internal" modules to be iteratively executed. There

are three kinds of looping modules: For module for a predetermined module of iterations, While

module: where the iteration condition is tested at the beginning of the loop, and Repeat module in

which the condition is tested at the end.

� SPMD Module: A module representing a SPMD program written using one of the message passing

interface like MPI, PVM, etc. This module, depending on its speci�cation, gets executed on a

dedicated parallel machine or on a cluster of workstations.

� Hierarchical Module: An abstract module representing a subgraph, i.e., a recursively de�ned collec-

tion of modules.

In the current prototype there are two ways to specify a distributed applications: script-based or visual.

In the next two subsections we describe these two speci�cation mechanisms.

4

Script-Based Speci�cation. Arcade supports script-based o�ine speci�cation of a distributed het-

erogeneous application. The syntax of the script is simple allowing users to specify the di�erent modules, as

described above along with the properties of these modules. In particular, the user must specify the following

properties for each Normal Module:

� Module Name

� Module Directory: the directory in which the executable and input/output �les are to be found.

� File Name: the name of the executable.

� Parameter: command line arguments to be used for execution.

� Machine Name: on which the module is to be executed.

� Input Names and Files: a globally unique name for each input along with the associated �le name.

� Output Names and Files: a globally unique name for each output along with the associated �le

name.

Similarly, the user can specify the properties of the other types of modules.

Figure 2 shows a screenshot of the script-based speci�cation of an arti�cial application whose structure

is shown graphically at the bottom. In the script-based system, the interconnections between the modules

are de�ned based on the globally unique names for the inputs/outputs of the modules. Thus, for example

as shown in the top half of Figure 2, Module M2 has two outputs: m2 out1 and m2 out2 while Module M3

has two inputs: m2 out1 and m2 out2 and Module M4 has one input: m2 out1 de�ning the interconnections

shown graphically in the bottom half of the �gure.

Visual Interface. The visual speci�cation applet allows a user to graphically specify a heterogeneous

application. The objective is to support a visual speci�cation which is: (i) intuitive to build, (ii) can be

used for visual monitoring, and (iii) works with the Web. There exist a number of visual language projects

{ see [4] for a classi�cation of many of these projects. However, most of the projects which support program

speci�cation are either focussed on �ne-grained programming or support only data-
ow applications. That

is, they do not provide any integrated, intuitive approach to specify control constructs in coarse-grained

distributed applications.

We have implemented a Java applet that provides a visual speci�cation interface and addresses some

of these issues (see Figure 3). The visual speci�cation can be seen as a graph where a node represents a

module and the arcs represent the
ow of data between the modules. It is easy to see how a data
ow-

based application can be modeled using such a system. It becomes a little trickier to accommodate control

structures such as conditionals and iterations, in particular when we want to use the visual speci�cation for

monitoring too. We accommodate if-modules and loop-modules by restricting their bodies to be hierarchical

modules which are speci�ed through a separate window. Thus, the modules labeled Then-block and Else-

block represent hierarchical modules abstracting the then and else part of if construct respectively. Similarly,

the module Body, represents the loop body of the while loop. Restricting the bodies of control structures

to hierarchical modules eases the task of speci�cation and allows the application to be visually represented.

However, it does not provide an integrated view of the whole application in a single window, i.e., the body

of a control structure is always shown in a separate window.

4.2. Application Execution. Each application is internally represented by a Java Project object.

The Project object, consisting of a vector of modules objects, is the central object in our framework. All the

information related to the application, both static and dynamic, is stored within this object. The Project

object is a complex object that is shared by all the processes of the middle tier (see Figure 1) and supports

methods that are used by these processes. When the user requests the execution of an application, the User

5

M1

M10

M4

True

YES
while

M7

M8

M3

M2

M5

if

YES

False

for

M9

Fig. 2. Script-based Speci�cation

Interface Server passes the corresponding Project object to the Execution Controller (EC). It is the EC's

responsibility to manage the execution and the interaction of the modules speci�ed within the application.

For executing the application, the EC needs to call some initialization methods of the Project object

followed by its execution method. For example, if the application has been speci�ed using the script-based

mechanism, then the dependencies (which had been speci�ed implicitly) have to be explicitly computed and

6

Fig. 3. Visual Speci�cation Interface

stored. The EC then executes the modules using a data-
ow approach. That is, it launches the execution

of a module as soon as its inputs are available. Note that the interaction in the current system is based on

�les. Thus, the EC has to ensure that the inputs for a module are in the �les as speci�ed in the project

speci�cation. That is, if a module produces a �le which is physically di�erent from the �le speci�ed as

an input �le by a dependent module the EC copies the �le over before execution is started. Here we are

assuming that the application is executing in a single domain with a global �le system so that copying �les

does not raise any security issues.

The system requires the user to specify the resource on which each module is to be executed in the

application speci�cation. Thus, to execute a module, the EC contacts the Resource Controller (RC) on the

speci�ed resource and requests that the module be executed. The RC starts the execution and monitors it.

The RC noti�es the EC when the module �nishes execution. The EC determines the modules that were

dependent on this module and launches them if all of their inputs are ready. Once all the modules have

�nished execution, the user can be noti�ed.

A monitoring applet allows users to monitor the execution status of the application. Two di�erent

interfaces supported: text-based and graphical. The text-based interface indicates the time a module execu-

tion begins and the machine being used for the execution. As a module �nishes execution, the completion

time is also indicated. The graphical interface is available only for visually speci�ed applications and uses a

pre-determined color-scheme to indicate modules which have �nished execution, are currently executing and

are awaiting execution.

5. Future Work. In the last two sections we have described our overall design of the Arcade system

and the state of the current prototype. This is work in progress and we are working to improve and extend

several aspects of the system. We discuss some of these issues here.

The speci�cation interface allows both a script-based and visual speci�cation of the application. However,

both of these interfaces provide only restricted support for speci�cation. We are experimenting with several

ways to extend the speci�cation script, in particular examining how we can use a full programming language

such as Java as the speci�cation mechanism. Also, the current interface only displays scripts which have

7

been edited o�ine - we are building a script editor so that the application can be speci�ed from within the

framework. The visual interface will also be extended to make it more robust and integrated. Currently

there are no multi-user speci�cation capabilities. We are extending the system to include the concept of

teams including managers and subteams and support collaborative speci�cation of applications.

To make our framework easy to use, we would like it to provide support for massaging input and output

from di�erent modules. This is sometimes necessary to make the output of a module compatible with the

input of the other modules. One way around the problem is to require the module designer to make the

necessary changes in the code. However, we are examining mechanisms which will allow \data translators"

to be speci�ed at a high level and automatically generated so that data can be transformed before they are

communicated from one module to another. We are exploring two di�erent ways of doing this. First, we

are investigating the use of SmartFiles [8], a system which supports the speci�cation of meta-data to de�ne

data contained in traditional �les. Second, we are also investigating a tool which provides similar facilities,

however, this tool uses a data base as an intermediary for storing and transforming the data.

Another issue is resource mapping. In the current system, we require the user to statically specify the

resource on which each module is to execute. Our hope is to include an intelligent resource mapper which

can dynamically determine the optimal mapping of a module given its requirements and the current loads of

the system. We are investigating several options, including incorporating a system such as AppLeS [2] into

Arcade.

The two major components of security that are of interest to us are: authentication, and access control.

These issues are manageable if we restrict our framework to one domain. However, it is not clear how to

address these issues when working across organizations. The main reason is the existence of multiple non-

inter-operable standards that are transport-dependent. In the current prototype we have not addressed the

multi-domain security issues.

Another major challenge, besides looking at the speci�c interfaces and controllers, is to architect the

framework such that it is possible to plug-and-play di�erent interfaces and controllers. We are hoping that

the CORBA-based approach that we are taking for the future extensions to the framework, will make this

task easier.

6. Conclusion. In this paper, we have described a integrated Web-Java based environment, Arcade,

for the design, execution, monitoring and steering of heterogeneous applications in distributed execution

environment. We have described the current prototype of the system which is capable of executing dis-

tributed applications on a network of resources in a single domain. We are currently expanding the system

to incorporate all the facilities envisioned in our architecture in a phased approach, an approach where

the driving force is the user of the system. More information on the Arcade system can be found at

http://www.icase.edu/arcade.

REFERENCES

[1] Lukasz Beca, Gang Cheng, Geoffrey C. Fox, Tomasz Jurga, Konrad Olszewski, Marek

Podgorny, Piotr Sokolowski, Tomasz Stachowiak, and Krzysztof Walczak, TANGO |

A Collaborative Environment for the World-Wide Web, http://www.npac.syr.edu/projects/tango.

[2] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, Application-level Scheduling on

Distributed Heterogeneous Networks, Supercomputing'96, November 1996.

8

[3] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W. Furmanski, and G. Premchandran,

WebFlow | A visual programming paradigm for Web/Java based coarse grain distributed computing,

Concurrency: Practice and Experience, Java Special Issue, 9(6) (March 1997), pp. 555-578.

[4] M. Burnett and M. Baker, A Classi�cation System for Visual Programming Languages, Technical

Report 93-60-14, Department of Computer Science, Oregon State University, Corvallis, OR 97331,

1993 (revised 1994).

[5] Z. Chen, K. Maly, P. Mehrotra, P. Vangala, and M. Zubair, Web-based Framework for Dis-

tributed Computing, Concurrency: Practice and Experience, Java Special Issue, 9(11) (November

1997), pp. 1175-1180.

[6] K.J. Goldman, B. Swaminathan, T.P. McCartney, M.D. Anderson, and R. Sethuraman,

The Programmers' Playground: I/O Abstraction for User-con�gurable Distributed Applications, IEEE

Transactions on Software Engineering, 21(9) (September 1995), pp. 735-746.

[7] P. Gray and V. Sunderam, IceT: Distributed Computing and Java, Concurrency: Practice and Ex-

perience, Java Special Issue, 9(11) (November 1997), pp. 1161-1168.

[8] M. Haines, P. Mehrotra, and J. Van Rosendale, SmartFiles: An OO approach to data �le interop-

erability, in Proceedings of OOPSLA 95, the Tenth ACM Conference on Object-oriented Programming

Systems, Languages, and Applications, Austin, TX, pp. 453-466, October 1995.

[9] K. Maly, S. Kelkar, and M. Zubair, Scienti�c Computing Using pPVM, International Conference

on Parallel Processing, 2 (August 1994), pp. 201-205.

[10] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard Version 2.0, Technical

Report, Computer Science Department, University of Tennessee, Knoxville, TN, 1997.

[11] NCSA Habanero Project, http://www.ncsa.uiuc.edu/SDG/Software/Habanero/.

[12] R. Orfali and D. Harkey, Client/Server Programming with Java and CORBA, John Wiley & Sons,

1997.

[13] J.C. Peterson, Multidisciplinary Integrated Design Assistant For Spacecraft (MIDAS),

http://mishkin.jpl.nasa.gov/Midas Page.

[14] Product Realization Environment, http://www-collab.ca.sandia.gov/pre.

[15] V. Sunderam, PVM: A Framework for Parallel Distributed Computing, Concurrency: Practice and

Experience, 2(4) (December 1990).

[16] R.P. Weston, J.C. Townsend, T.M. Eidson, and R.L. Gates, A Distributed Computing Environ-

ment for Multidisciplinary Design, 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary

Analysis and Optimization, Panama City, FL, AIAA 94-4372, September 7-9, 1994.

9

